National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Cardioptrotective role of transcription factor HIF isoforms in rats
Bučinská, Ivana ; Žurmanová, Jitka (advisor) ; Pavlínková, Gabriela (referee)
Adaptation to chronic hypoxia is characterized by a variety of functional changes in order to maintain metabolic and energy homeostasis. It has been known for many years that both humans and animals indigenous or adapted to high-altitude hypoxia are more tolerant to an acute ischemic injury of the heart. HIF1α is found as a primary transcriptional regulator of adaptive response to hypoxia in all tissues, whereas HIF2α is more tissue specific. The activity of HIFα is regualted by prolyl hydoxylases (EGLN). The EGLN1 was shown to be more efficient in HIF1α hydroxylation than in HIF2α. As well as the EGLN3 is more specific for HIF2α . Under hypoxic conditions, HIF activates the transcription of about 70 genes. Hence, HIF1α and HIF2α can play an essential role in pathophysiology of ischemic heart disease. The aim of our study was to determine myocardial expression of HIFs and its regulatory hydroxylases in adult male Wistar rats adapted to continuous normobaric hypoxia (H; FIO2 = 0.1) for 3 weeks. Another two groups of rats were exposed to normobaric hypoxia intermittently for either 8 h/day (INH) or 23 h/day (RH) during the 3-week adaptation period. While H induces protective cardiac phenotype, the later regimen (RH) does not. The protein expression of HIFs, PHDs and FIH were then determined by...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.